Uka Tarsadia University (Diwaliba Polytechnic)

Diploma in Computer Engineering

Assignment (Thermal Engineering-1 -020040402)

Unit-1 Two phase system

- 1. Define wet steam and dry steam?
- 2. What are the different uses of throttling process?
- 3. Define two phase system with example.
- 4. What is the concept of two phase system?
- 5. Give working principle of throttling calorimeter.
- 6. What is sensible heat? Write its unit.
- 7. What is two phase system? Give atleast two examples.
- 8. What is the degree of superheat?
- 9. Give importance of mollier chart.
- 10. Define dryness fraction and state its formula.
- 11. Give meaning of latent heat of evaporation.
- 12. Which are the different methods of measuring dryness fraction of steam?
- 13. What is throttling process?
- 14. What is the function of calorimeter? Enlist different types of calorimeters.
- 15. Give equation for enthalpy of (a) dry and saturated steam (b) wet steam.
- 16. Explain method of determining dryness fraction by seperating calorimeter.
- 17. Describe formation of steam and its various phases.
- 18. Find enthalpy and volume of steam having 5 kg steam at 15 bar absolute pressure with 0.85 dryness fraction.
- 19. Explain throttling process on heat entropy chart.
- 20. What is throttling? Draw throttling process on P-V, T-S and h-s diagram.
- 21. Determine volume of 1 kg of superheated steam at pressure of 20 bar absolute and temperature of 300 degree celcius.
- 22. Explain method of determining dryness fraction by barrel or bucket calorimeter.
- 23. Describe process of generation of wet steam, dry and saturated steam and super heated steam with the help of T-S diagram.
- 24. With the help of steam table find values of entropy of water, entropy of evaporation and entropy of dry saturated steam at given pressure 5 bar, 8 bar, 12 bar.
- 25. Explain entropy is a function of temperature only.
- 26. Describe mollier diagram and give its importance.
- 27. Explain method of determining dryness fraction by throttling calorimeter.
- 28. Determine volume of 1 kg of superheated steam at pressure of 15 bar absolute and temperature of 250 degree celcius.
- 29. Explain method of determining dryness fraction by combined seperating and throttling calorimeter.
- 30. Find enthalpy, entropy and volume of 10 kg steam at 12 bar and 0.85 dryness fraction.
- 31. Describe method of determining dryness fraction by bucket calorimeter.
- 32. Find enthalpy and volume of steam having 10 kg steam at 12 bar absolute pressure with 0.90 dryness fraction.
- 33. Explain throttling process on heat-entropy chart.

- 34. 1 kg steam is heated from 10 bar absolute pressure and 0.8 dryness fraction to superheated with 50 degree celcius of superheat at constant pressure. Find out change in enthalpy.
- 35. Explain method of determining dryness fraction by seperating calorimeter.

Unit-2 Boilers, Mountings and Accessories

- 1. List the requirement of good boiler
- 2. Differentiate the forced circulation boiler and natural circulation boiler.
- 3. Define boiler. What is the pressure range in high pressure boiler?
- 4. What are factors should be considered while selecting boiler?
- 5. Draw spring laded safety valve.
- 6. Define high pressure boiler and list out the names of it.
- 7. Write the name of boiler mounting and accessories.
- 8. Draw figure of an Air preheater.
- 15. Give classification of steam turbine according to steam reaction, steam flow and steam pressure.
- 16. Differentiate between natural draft and artificial draft.
- 17. Write the advantages of draft.
- 18. Define natural draft and artificial draft?
- 19. Explain boiler efficiency.
- 20. Draw Cochran boiler with neat Sketch.
- 21. Draw Babcock and Wilcox boiler with neat Sketch.
- 22. Differentiate between fire tube boiler and water tube boiler
- 23. Differentiate between boiler mountings and boiler accessories.
- 24. Which are the factors affecting natural draft?
- 25. Give applications of Boiler in detail.
- 26. Give classification of Boiler.
- 27. Explain working of Babcock and Wilcox.(Figure not needed)
- 28. Explain following Terminology of boiler.
 - (a) Shell (b) Grate (c) Blowing off
- 29. Draw neat sketch figure of water level indicator.
- 30. Draw neat sketch dead weight safety valve.
- 31. Draw neat sketch Blow off cock.
- 32. Explain working of fusible plug.
- 33. Explain Maintenance of boiler.
- 34. Give examples of different criteria used to classify boilers.
- 35. Write a short note on Inspection of boiler.
- 36. Write a short note on Cochran boiler.
- 37. Draw neat sketch of Loeffler boiler.
- 38. Give short note on steam turbine.
- 39. Give short note ongas turbine.
- 40. Explain equivalent evaporation of boiler.

Unit-3 Steam prime movers

- 1. What is energy? Which are the forms of energy?
- 2. State the functions of steam nozzle.
- 3. What is compounding of impulse turbine?
- 4. What are the applications of steam nozzles?
- 5. Classify steam prime movers.
- 6. Why compounding of steam turbine is required?
- 7. Classify steam nozzles. Draw a neat sketch of convergent nozzle.
- 8. What are applications of steam turbines?
- 9. What is prime mover? Give its complete list.
- 10. What is energy? State unit of energy.
- 11. State the main elements of impulse turbine.
- 12. What are the applications of steam nozzles?
- 13. What are the advantages of impulse turbine?
- 14. Draw a neat sketch of divergent nozzle.
- 15. What do you mean by compounding?
- 16. What is the main difference between steam engine and steam turbine?
- 17. Discuss the types of energy.
- 18. Explain the velocity compounding of impulse turbine.
- 19. Differentiate between steam engine and steam turbine.
- 20. Give the comparison between impulse turbine and reaction turbine.
- 21. Differentiate between steam engine and steam turbine. Write at least six points.
- 22. Explain the pressure compounding of impulse turbine.
- 23. Derive the equation of nozzle efficiency.
- 24. Apply SFEE to nozzle and derive equation of extreme velocity.
- 25. Explain pressure-velocity compounding of impulse turbine.
- 26. Describe about divergent nozzle and draw its neat sketch.
- 27. State the advantages and disadvantages of pressure compounding.
- 28. Write a short note on impulse turbine.
- 29. Differentiate between impulse turbine and reaction turbine.
- 30. State the advantages and disadvantages of pressure-velocity Compounding.
- 31. Determine the nozzle efficiency and state its equation.
- 32. What is the full form of SFEE? Apply SFEE to nozzle.
- 33. Classify steam turbines.
- 34. Write a short note on reaction turbine.
- 35. State the function of steam nozzle. Show on T-s and h-s diagram, when expansion taking place in nozzle with and without friction.
- 36. Explain the following types of energy: (i) potential energy, (ii) kinetic energy and (iii) internal energy.

Unit-4 Steam condensers and Cooling towers

- 1. Draw neat sketch of surface condenser. State its advantages.
- 2. What do you mean by boiler feed water pump?
- 3. Give difference between parallel and counter flow Jet condenser.
- 4. Draw a neat diagram of surface condenser.
- 5. Write down the disadvantages of jet condenser.
- 6. What is condenser efficiency?
- 7. Explain in brief about feed water pump.
- 8. Give merits of natural draught cooling tower.
- 9. Differentiate Jet condenser and Surface condenser.
- 10. Compare parallel and counter flow Jet condenser.
- 11. Draw neat sketch of cooling tower.
- 12. State the limitations of jet condensers.
- 13. State the merits of jet condensers.
- 14. Compare between Jet condenser and Surface condenser.
- 15. Give disadvantages of natural draught cooling tower.
- 16. Write a note on jet condenser.
- 17. Give classification and purpose of cooling towers.
- 18. Explain surface condenser in detail.
- 19. Draw and describe briefly about induced draught cooling tower.
- 20. Give brief idea about jet condenser.
- 21. Classify surface condenser and explain in detail.
- 22. Draw and describe briefly about natural draught cooling tower
- 23. Explain counter flow induced draught cooling tower.
- 24. Write a note on surface condenser.
- 25. Explain natural draught cooling tower
- 26. Explain the effect of air leakage in condenser.
- 27. Explain parallel flow jet condenser.
- 28. Explain the effect of air leakage in condenser.
- 29. Give brief idea about surface condenser.
- 30. Explain counter flow jet condenser.
- 31. Describe different types of cooling towers.
- 32. Differentiate between natural and mechanical draft tower.
- 33. State primary and secondary functions of a condenser in a steam power plant.
- 34. Classify cooling towers.
- 35. What are the sources of air leakage in condenser?

Unit-5 Air compressor

- 1. Difference between reciprocating and rotary compressors.
- 2. State applications of air compressors.
- 3. Explain the effect of clearance on reciprocating compressor.
- 4. State the functions of important parts of single stage reciprocating compressor.
- 5. Difference between positive displacement and dynamic compressors.
- 6. Name different component of centrifugal compressor and explain function of each.
- 7. What is cavitation? Explain in brief.
- 8. Difference between rotary and reciprocating compressors.
- 9. Give examples of industrial and commercial uses of compressors.
- 10. Explain following terms:
 - 1. Compression ratio
 - 2. Volumetric efficiency
 - 3. Clearance ratio
- 11. What is clearance volume? Why small clearance is required?
- 12. Explain cavitation process.
- 13. What is volumetric clearance? Why clearance is needed in reciprocating compressor?
- 14. Explain working of single stage air compressor with neat diagram.
- 15. What do you mean by Centrifugal compressor? Explain in brief.
- 16. A single stage single acting air compressor is having diameter of 320 mm and 430 mm stroke. It runs at 150 R.P.M. Air at 1 bar and 20°C is taken into the compressor at entry. This air is compressed to 5 bar pressure. Calculate: (1) Mean effective pressure (2) Power required when compression is (a) Isothermal (b) Adiabatic. Also calculate isothermal efficiency. Take R = 287 J/kg K. Neglect clearance.
- 17. Explain screw compressor with neat diagram.
- 18. Write note on working of single stage air compressor with neat diagram.
- 19. State working of Centrifugal compressor with appropriate diagram.
- 20. Explain positive displacement compressors.
- 21. What do you mean by single stage air compressor? Explain in brief.
- 22. Briefly describe working of Centrifugal compressor with neat diagram.
- 23. For a single acting compressor having its bore and stroke are 130mm and 190mm respectively. Air enters the compressor at 1bar pressure and 20°C. Air is compressed to 6 bar according to law PV^{1.3}= C. The compressor is rotating at 110 rpm. Calculate isothermal work done. Take R= 287 J/kg K. Assume no clearance.
- 24. Briefly describe working of single stage air compressor with neat diagram.
- 25. Write note on working of Centrifugal compressor with neat diagram.
- 26. Explain Vane type compressor with appropriate diagram.
- 27. State working of single stage air compressor with appropriate diagram.
- 28. Explain working of Centrifugal compressor with neat diagram.
- 29. Classify compressors and explain one in detail.
- 30. Explain following terms:
 - 1. Compression ratio
 - 2. Volumetric efficiency
 - 3. Clearance ratio

Unit-6 Heat transfer

- 1. Write down Fourier's Law of Conduction.
- 2. Explain Thermal resistance.
- 3. For same heat transfer rate, which arrangement out of parallel or counter flow will produce compact heat exchanger? Justify your answer.
- 4. Draw temperature diagram for evaporator and condenser during heat transfer process.
- 5. Give the value of transmissivity of opaque body and transparent body.
- 6. Define Convective heat transfer coefficient.
- 7. Give physical significant of Thermal Conductivity.
- 8. Differentiate between Free Convection and Force Convection.
- 9. Explain Recuperator type heat exchanger.
- 10. Draw temperature diagram for counter flow heat exchanger and parallel flow heat exchanger during heat transfer process.
- 11. What is black body? Give the value of transmissivity of opaque body and transparent body.
- 12. Define Thermal conductivity.
- 13. Differentiate Conduction and Convection process.
- 14. Give comparison between Parallel Flow/Counter Flow/Cross Flow Heat Exchanger
- 15. Out of natural and forced convection process which one has higher value of heat transfer coefficient? Justify your answer.
- 16. Give assumption on which Fourier's law is based.
- 17. State Stefan Boltzmann law
- 18. For same heat transfer rate, counter flow arrangement requires lower heat exchange area than required for parallel flow arrangement. Justify the statement with necessary diagram.
- 19. An oil cooler for a lubrication system has to cool 1000kg/h of oil (Cp=2.09 kJ/kg°C) from 80°C to 40°C by using a cooling water flow of 1000 kg/h at 30°C. Give your choice for a parallel flow or counter flow heat exchanger, with reasons. Calculate the surface area of the heat exchanger, if overall heat transfer coefficient if 24 W/m2°C. Take Cp of water = 4.18 kJ/kg°C.
- 20. Derive equation of heat transfer through a plane wall.
- 21. Explain absorptivity, reflectivity and transmissivity
- 22. Give classification of heat exchanger with examples.
- 23. A counter flow double pipe heat exchanger using superheated steam is used to hot water at the rate of 10500 kg/h. The steam enters the heat exchanger at 180°C and leaves at 130°C. The inlet and exit temperatures of water are 30°C and 80°C respectively. If the overall heat transfer coefficient from steam to water is 814 W/m²°C, calculate the heat transfer area. What would be the increase in area if the fluid were parallel?
- 24. Explain heat transfer through a plain wall.
- 25. Explain different mode of heat transfer.
- 26. Classify heat exchangers and explain one in detail.
- 27. The flow rates of hot and cold water streams running through a parallel flow heat exchangers are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperature on the hot and cold sides are 75°C and 20°C respectively. The exit temperature of hot water is 45°C,If the individual heat transfer coefficients on the both sides are 650 W/m² °C, calculate the area of the heat exchangers.
- 28. Derive Overall heat transfer coefficient for composite material.
- 29. Explain Convection phenomenon with Newton's law of convection.
- 30. Explain shell and tube type heat exchanger with examples.
- 31. State different modes of heat transfer with examples.
- 32. Explain natural and forced convection.
- 33. State different types of heat exchanger and explain any one.
- 34. Derive LMTD for parallel flow heat exchanger.